
AWS SERVERLESS APPLICATION MODEL
IMPROVES COST EFFICIENCY FOR PRECISION
EXAM’S INFRASTRUCTURE

Client Background
Our client provides a web platform for taking
exams. The platform empowers teachers
nationwide to enroll students, authorize,
conduct exams online, and review results.

Business Challenge

The existing client product is currently
using older technologies and architectures
that can be replaced by modern services
provided by AWS. Although the system
modules are decoupled and provide a
robust solution, there were improvements
that could be made to the architecture and
CI/CD environment to enhance availability
and scalability approaches based on AWS
services.

Due to increases in customer usage, driving
new business requirements and in order
to improve current infrastructure in the
cost-efficient way, it was decided to start
development of serverless application

within the Proof of Concept stage for
further migration to the production-ready
solution. That’s why the client requested
SoftServe to provide a prototype of a
system, built on top of AWS Cloud, using the
best-practices approach in architecture and
managed AWS Services.

Challenges for the new solution:

•	 Build a highly-available, scalable and
robust system

•	 Use AWS managed and serverless
services, in order to cover all application
requirement

•	 Follow AWS best practices for
infrastructure design

•	 Serverless for local development and
testing

•	 Continues Integration/Delivery
implementation

•	 Infrastructure as a Code implementation
•	 Application Monitoring and Log

aggregation

case study | AWS Serverless Application Model Improves Cost Efficiency for Precision Exam’s Infrastructure 2

Project Description

Based on the best-practices were chosen AWS Lambda, API Gateway, and DynamoDB as
serverless solutions that allow running code, describe RESTful API and store persistent data
without any server provisioning and with minimal managing. Amazon Cognito provides
user management, sign-up, sign-in, and access control to web apps quickly and easily.

Web client

1

Amazon Cognito

AWS

Amazon CloudFront
Content Delivery Network

Lambda exectes Backend
aplication logic

DynamoDB is
Persistent layer

Cognito User Pools registers and
authenticates users

S3 hosts static
content, such as

HTML, CSS,
JavaScript ect.

Amazon Simple Storage
Service (S3)

AWS Lambda Amazon DynamoDBAmazon API Gateway

2 2

4

3

5 6

Figure 1: High level architecture diagram

Adhere to the principle of microservices, it was decided to create small lambda functions
and avoid huge ones. Lambda functions essentially were designed to have only one class/
function inside without various dependencies and repetitive functions. We used AWS
Lambda Layers functionality to carry out the repetitive code and shared libraries into the
separate essence (layer). In spite of the chosen approach to store a set of lambda code in
a git mono-repository, lambdas were designed in the way of independent deployment.
Basically, only changed lambdas will be re-deployed without deploying any other
unchanged function within the same repository.

case study | AWS Serverless Application Model Improves Cost Efficiency for Precision Exam’s Infrastructure 3

Temp files

Manual
approval for

deploy

Git users

1

AWS

Bitbucket
Git repository

AWS Lambda

Remove temporary
files

2

3

3

3
5

4

AWS CodeCommit

AWS CodeBuild

AWS CodePipeline

Lambda
function

Web client

1

Amazon
Cognito

AWS

Amazon CloudFront
Content Delivery Network

Lambda exectes Backend
aplication logic

Amazon Simple Storage
Service (S3)

AWS LambdaAmazon API Gateway

2

33

5

4

6

6

Lambda
function

6

Amazon Route53

Figure 2: Serverless Backend Service and RESTful API

Figure 3: CI/CD for backend Lambda functions

On Figure 3 (bellow) shown CI/CD flow of serverless backend with using of AWS
CodeCommit, CodeBuild and CodePipeline services. Since client requirement was to use
BitBucket service as a git repository, we integrated it with AWS CodeCommit for having
full-featured CI/CD Pipeline. We have git mono-repository, each lambda function has it is
own directory for the codebase. Once changes on CodeCommit trigger AWS CodeBuild, it
assembles the application, sends code to S3 bucket and moves CloudFormation template
file up the pipeline chain to deploy the changed resources. In order to deploy only that
lambda function which code was changed, we set up Maven reproducible builds plugin.

case study | AWS Serverless Application Model Improves Cost Efficiency for Precision Exam’s Infrastructure 4

Accordingly, to the decision of using serverless services as much as possible, we migrated
static web content from reserved EC2 instances to AWS S3 buckets with enabled Static
Web Hosting option, CloudFront, Route53. All of the static web content, including HTML,
CSS, JavaScript, images and other files are securely served via Amazon CloudFront. End
users access the website using the public website URL exposed by Amazon Route 53, which
points to Amazon CloudFront distribution. Amazon CloudFront distribution works with
static content on Amazon S3.

Figure 4: Static web hosting diagram

Git users

1

AWS

2 3

Amazon CloudFront
Content Delivery Network

Amazon Route53
DNS-zone records

3 3

Amazon Simple Storage
Service (S3)

Bucket with objects
HTML, CSS, JavaScript, etc.

AWS Serverless Application Model (AWS SAM) is a framework that we use for emulating
lambdas and API resources locally. It provides the ability to test the code internally and
does not upload the code into AWS each time in order to test the changes. Mostly, we use
SAM CLI for API Gateway emulation and local function invocation. In its essence, SAM is a
CloudFormation library, therefore we have serverless resources (Lambdas, API gateways)
described as a code. Moreover, SAM allows us to build serverless applications faster and
smoother.

Figure 5: AWS API Gateway emulation example

8PROBLEMS OUTPUT DEBUG CONSOLE 1: PythonTERMINAL

$ sam local start-api
2019-01-09 13:56:42 Found credentials in shared credential file: ~/ .aws/credentials
2019-01-09 13:56:42 Mounting TempConversionFunction at http://127.0.0.1:3000/{conversion}/{value} [GET]
2019-01-09 13:56:42 You can now browse to the above endpoints to invoke your functions. You do not need to restart/reload SAM CLI while working
changes will be reflected instantly/automatically. You only need to restart SAM CLI if you update your AWS SAM template
2019-01-09 13:56:42 * Running on http://127.0.0.1:3000/ (Press CTRL+C to quit)

case study | AWS Serverless Application Model Improves Cost Efficiency for Precision Exam’s Infrastructure 5

AWS

21

3

4

Amazon API Gateway

Lambda exectes Backend
aplication logic

AWS Lambda

2 Amazon CloudWatch

Amazon X-Ray

Figure 7: Monitoring and lagging general overview

Figure 6: AWS Lambda local invocation example

For serverless service monitoring and troubleshooting, we configured AWS CloudWatch
and AWS X-Ray which recognize problems and mitigate any risks. With CloudWatch, it
easy to monitor key metrics and logs, visualize application and infrastructure stack,
create alarms, and correlate metrics and logs to understand and resolve the root cause of
performance issues. The AWS X-Ray also provides two powerful features that can improve
the efficiency in Active tracing, provides distributed tracing capabilities as well as visual
service maps for faster troubleshooting. X-Ray helps to identify performance degradation
and quickly understand anomalies, including latency distributions.

case study | AWS Serverless Application Model Improves Cost Efficiency for Precision Exam’s Infrastructure 6

Value Delivered

SoftServe delivered on time the prototype
of the highly-available, robust and scalable
serverless system. In tight collaboration
with developers, we updated java code to
the newer version and wrapped it up to
fulfill the necessary serverless criteria. The
prototype is ready for further development
with no visible red flags for production in
perspective.

Within the PoC SoftServe delivered:

•	 Designing and implementation of such
serverless services as AWS Lambda, API
Gateway, DynamoDB, CloudFront, S3.

•	 Log-In and Registration flow with
Amazon Cognito.

•	 Infrastructure as a Code by means of
CloudFormation and AWS SAM.

•	 Serverless local development and
testing using AWS SAM.

•	 Implemented Continues Integration/
Delivery for application’s back-end
parts.

•	 Implemented Continues Integration/
Delivery for application’s front-end
parts.

•	 Application Monitoring and Log
aggregation with CloudWatch and X-RAY.

ABOUT US
SoftServe is a digital authority that advises and provides at the
cutting-edge of technology. We reveal, transform, accelerate, and
optimize the way enterprises and software companies do business.
With expertise across healthcare, retail, media, financial services,
software, and more, we implement end-to-end solutions to deliver
the innovation, quality, and speed that our clients’ users expect.

SoftServe delivers open innovation—from generating compelling
new ideas, to developing and implementing transformational
products and services.

Our work and client experience is are built on a foundation of
empathetic, human-focused experience design that ensures
continuity from concept to release.

We empower enterprises and software companies to (re)identify
differentiation, accelerate solution development, and vigorously
compete in today’s digital economy—No matter where you are in
your journey.

Visit our website, blog, Facebook, Twitter, and LinkedIn pages.

NORTH AMERICAN HQ

201 W 5th Street, Suite 1550
Austin, TX 75703
+1 866 687 3588

1 University Avenue Suite 11-112
Toronto, ON M5J 2P1
+1 647 948 7638

EUROPEAN HQ

14 New Street
London EC2M 4HE, UK
+44 (0) 800 302 9436

info@softserveinc.com
www.softserveinc.com

https://www.softserveinc.com/en-us/
https://www.softserveinc.com/en-us/blog/
https://www.facebook.com/SoftServeCompany/
https://twitter.com/SoftServeInc
https://www.linkedin.com/company/softserve/

