
Custom CI/CD Solution
Deployed on AWS Helps Meal
Delivery Service Transform
Microservices Architecture

CASE
STUDY

Client Background

Our client is a top US-based meal deliv-
ery service.

Business Challenge

Our client owns a web platform based
on microservice architecture. Portions
of the platform have to commu-

nicate with on-prem devices and software.
The main part of the solution leveraged a
Kubernetes cluster semi-manually deployed
into AWS using a mix of an open-source tool
and Terraform configurations. The business
has strict reliability requirements that blocked
the possibility of updating the cluster version
and its core components in runtime. There
was significant risk of losing the cluster
because of an update failure, and together
with other limitations, was impeding desired
infrastructure improvements. At the time
the project with SoftServe began, our client
had lost most of its associates who had
deep knowledge on the infrastructure his-
tory, architectural drivers, and decisions
made. Outdated infrastructure components
and architectural imperfections caused pro-
duction incidents that involved specific de-
velopment teams to address.

Furthermore, the Chef orchestration tool
was used to provision new instances, including
Kubernetes instances. Its configuration had
critical issues that caused the launch of new
nodes to be successful only half the time.

Additionally, regarding the infrastructure, a
custom CI/CD solution was created. The CI
solution imposed significant restrictions on
application delivery, making unusual CI use
cases nearly impossible to implement. The CI
tool, despite its good quality, prevented devel-
opers from gaining actual knowledge about
Docker, Kubernetes, and related open-source
tools. To meet the growing internal devel-
opment and business needs, our client needed
to update the Kubernetes cluster deployment
architecture and prepare a flexible CI/CD so-
lution that meet current industry standards.

case study | Custom CI/CD Solution Deployed on AWS Helps Meal Delivery Service Transform
 Microservices Architecture

2

Main VPC

Account, region

Availability zones A-Z

Autoscaling groups

Private subnet
“Utility”

Master nodes

Public subnet

Load balancers Shared services

Private subnet "Team A"

Shared servicesWorker nodes

Private subnet
“Team Z”

Shared servicesWorker nodes

Private subnet
“Team B”

Shared servicesWorker nodes

Project Description

T he project included several parts.
Some were extracted into separate
projects, such as improvements in the

logging system, which could be done in
earlier stages than other larger planned
architecture changes. The proposed solution
included improvements in several areas.

The first and most important part was
the networking architecture change. Two
additional network segments with similar
settings were prepared in the production
environment for future Kubernetes instal-
lations to make future migrations between
different cluster configurations smoother
and safer. This change made it possible to

do architectural experiments in production
without the risk of affecting all users at
once. This was done not only to update
the Kubernetes cluster version, but also to
perform significant changes to any internal
components without interrupting all running
applications at once.

Secondly, the cloud-based Kubernetes ser-
vice AWS EKS was chosen for future use.
The decision shifted the responsibility of
maintaining the cluster’s core components to
the cloud provider. This change also brought
another networking extension in Kubernetes,
which was deeply integrated with AWS VPC,
improving the overall networking performance.

case study | Custom CI/CD Solution Deployed on AWS Helps Meal Delivery Service Transform
 Microservices Architecture

3

Thirdly, all the configurations of the EKS
installation were reflected in code, which
included a combination of Terraform config-
urations, CI/CD jobs, and Kubernetes re-
sources in the form of Helm charts or plain
YAML configurations, stored under a source-
control repository. This guaranteed trans-
parency, disaster-recovery opportunities,
and eliminated worry of any accidental infra-
structure or cluster component changes in
any environment, including production.

Additionally, a new role-based authenti-
cation was configured based on a combi-
nation of an existing SAML-provider with
IAM roles and Kubernetes RBAC settings
which increased the overall security of the
cluster.

Another noteworthy improvement was the
use of a different load balancing method.
The Traefik Ingress Controller from the
previous cluster was replaced with an ALB
Ingress Controller in the new setup. Since
the ALB Ingress Controller stays beyond the
cluster itself, this step improved the overall
reliability and network performance.

One of the principal requirements was
to support gRPC communication between
services. To make the communication stable
and transparent, a service mesh component,
Linkerd, was used in the previous Kubernetes
installation. The new cluster setup also
included Linkerd, but it was updated to the
second generation, which is significantly
different from the first version—it requires
changes to the deployment process and
included several new features and improve-
ments.

The next key change was to replace the
legacy CI tool with a new multifunctional
solution based on top of Helm and Jenkins

features. Helm is a popular package manager
for Kubernetes and unlike many third-party
offered packages allows for the creation
of custom packages using a well-known
standardized method. Jenkins is an old, but
powerful automation server. A custom CI
library was developed to make the new CI
solution extremely flexible, transparent, re-
peatable, and scalable. The primary idea
around this CI version is “conventions against
restrictions” which allows developer teams to
implement unusual CI/CD pipelines without
waiting for DevOps team members to be-
come available. Also, the solution makes
possible the evolutionary development of
CI/CD without the mandatory updating of all
microservices when any new changes were
introduced into the primary libraries.

The Kubernetes node bootstrapping process
was improved. The Chef orchestration tool
is still used to install complimentary utilities,
improve monitoring, and add other tools
to an instance. However, any configuration
errors no longer block the instance from
being added to the cluster and start
processing its payload. This change consid-
erably reduced the time required to add
new instances to Kubernetes clusters.

case study | Custom CI/CD Solution Deployed on AWS Helps Meal Delivery Service Transform
 Microservices Architecture

4

Migration

E ach complex system has its history,
and revolutionary changes can do
these a disservice; not only because

it’s undesirable to interrupt production ser-
vices under load, but because people have
limited bandwidth. Spreading knowledge
across a company requires time, patience,
and effort. Some relationships between
applications aren’t visible until they break
and sometimes code has issues and does
not meet modern requirements, therefore
it’s not always easy to move into a new
environment. Migrations take significantly
longer time and include thousands of details
to track. This project was no exception.

Around 150 separate micro-services were
thoroughly analyzed, prepared, and convert-
ed into the new CI. The final migration into
the new production environment required
close control over all cross-dependencies,
splitting all services into separate groups
based on their public or private relationships
(Strangler pattern). Every unexpected ob-
stacle was analyzed, discussed with teams,
 and eventually overcome thanks to constant
and close cooperation with developers and
management. This made it possible to solve
problems that required attention in com-
pletely different directions.

Main VPC

Account, region

Availability zones A-Z

Autoscaling groupsEKS

Private subnet

Shared services

Private subnet
“Team A”

Shared services

Private subnet
“Team B”

Shared services

Private subnet
“Team C”

Shared services

Main VPC

Availability zones A-Z

Private subnet Private subnet

Worker nodesLoad balancers

Autoscaling groupsEKS

Main VPC

Availability zones A-Z

Private subnet Private subnet

Worker nodesLoad balancers

Replacement cluster,
On-demand

case study | Custom CI/CD Solution Deployed on AWS Helps Meal Delivery Service Transform
 Microservices Architecture

5

Value Delivered

D espite the ‘expected surprises’ that
appeared during project implemen-
tation, the new environment was built

and installed and the new CI replaced the
legacy CI for all Kubernetes-based projects.
Our client’s teams gained the knowledge
required to use the system effectively. The
updated cluster contains a cutting-edge ar-
chitectural stack, it ’s upgradable, reliable,
requires less effort to maintain, and is trans-
parent in any single trait, plus the vast major-
ity of its configuration is controlled via code
under Git. The number of worker nodes in
the cluster was cut in half. EC2 instances
were replaced with their modern gener-
ation and reserved upfront to reduce costs.
Each worker node now has better resource
utilization.

The migration was completed under load in
real-time with minimal requests interruption.
The newer recipes for Chef (orchestration
framework) are no longer crucial to the oper-
ation of the cluster and can be replaced with
any other framework when necessary. Addi-
tionally, the secret storage has been unbound
and can also be replaced when appropriate.
The solution is extremely flexible and de-
signed to meet future expectations.

Lessons Learned

N o matter how thoroughly research
was conducted, new findings are
guaranteed to be discovered at the

implementation stage. This means that
efforts put into planning are important by
definition, but proper testing is required.
Small changes should be delivered as soon
as possible when they are ready, but big
changes must stand for a while on stage to
be proven. Migrations cannot be controlled
completely unless all of the available re-
sources are applied to achieve the goal.
Since migrations are not something that
business need to focus on, there will always
be external factors that block some of the
stages and increase the time. Continuous
control and efforts allow what was started
to be completed to clear a path for new
aspirations and ideas.

case study | Custom CI/CD Solution Deployed on AWS Helps Meal Delivery Service Transform
 Microservices Architecture

6

ABOUT US
SoftServe is a digital authority that advises and provides at the
cutting-edge of technology. We reveal, transform, accelerate, and
optimize the way enterprises and software companies do business.
With expertise across healthcare, retail, energy, financial services, and
more, we implement end-to-end solutions to deliver the innovation,
quality, and speed that our clients’ users expect.

SoftServe delivers open innovation, from generating compelling
new ideas, to developing and implementing transformational
products and services.

Our work and client experience is built on a foundation of
empathetic, human-focused experience design that ensures
continuity from concept to release.

We empower enterprises and software companies to (re)identify
differentiation, accelerate solution development, and vigorously
compete in today’s digital economy. No matter where you are in
your journey.

Visit our website, blog, Facebook, Twitter, and LinkedIn pages.

NORTH AMERICAN HQ

201 W 5th Street, Suite 1550
Austin, TX 75703
+1 866 687 358

1 University Avenue Suite 11-112
Toronto, ON M5J 2P1
+1 647 948 7638

EUROPEAN HQ

14 New Street
London EC2M 4HE
+44 (0) 800 302 9436

info@softserveinc.com
www.softserveinc.com

https://www.softserveinc.com/en-us/
https://www.softserveinc.com/en-us/blog/
https://www.facebook.com/SoftServeCompany/
https://twitter.com/SoftServeInc
https://www.linkedin.com/company/softserve/

