
Client Background

With ceaseless data flows, open operating systems,
and large on-board computing capacity, mobile has
irreversibly transformed healthcare. However,
with great power comes great responsibility—building
a mobile healthcare application requires a totally
different range of requirements and overall solution
development approach. From reference architecture
and UI design to data security and regulatory
compliance, here is a detailed guide to develop
a mobile solution for healthcare.

STEP-BY-STEP GUIDE TO
DEVELOPING HEALTHCARE
MOBILE SOLUTIONS

case study Step-By-Step Guide to Developing Healthcare Mobile Solutions 2

Reference Architecture

Presentation Layer
Designing for an effective user experience can be critical to the success of an application.
Carry out usability studies, surveys, and interviews to understand what users require
and expect from the application, and design with these results in mind.

Business Layer
When designing a business logic subsystem, the goal is to minimize the complexity
and decouple components by separating responsibilities into different areas of concerns
to promote maintainability, reusability, and testability. For example, business processing,
business workflow, and business entities all represent different areas of concern.
Within each area, the components designed should focus on the specific area
and should not include code related to other areas of concern.

Communication
Communication will often involve sensitive data so it is important to design for security.
At the same time, designing an effective communication subsystem is also important
for reliability, performance, power, and traffic analytics.

Data Access
Designing the application to use a separate data access subsystem is important for
maintainability and extensibility. The data access subsystem should be responsible
for managing connections with the data source and for executing commands against
the data source. Depending on the business entity design, the data access subsystem
may have a dependency on business entities; however, the data access subsystem
should never be aware of business processes or workflow components.

Data Processing
It is often necessary to transform data to some other form or format—encrypt/decrypt,
compress/decompress, parse/generate JSON, etc.

Sensors
Mobile device sensors can be used to measure motion (accelerometer, gyroscope),
position (proximity, magnetic field), and various environmental conditions (light,
temperature, or humidity).

System Services
Mobile platforms allow access to some system services—make a phone call, send SMS,
get or update information in system address book, calendar, and so on.

case study Step-By-Step Guide to Developing Healthcare Mobile Solutions 3

Monetizing
There are many different options to make money from the mobile application.
Consider the following guidelines when designing monetizing:

• Choose the distribution type for your application—business to business (B2B),
in-house distribution within the organization, or public market distribution.

• Choose billing model—free, premium (pay for app), trial (upgrade to premium),
freemium (pay for in-app items), subscriptions, or monetize the app through
targeted advertising.

• To prevent malicious users from redistributing paid content, do not bundle
it in the application bundle, Instead, download it from the remote server.

• Verify the purchase state of unlocked content whenever users access it.
• Obfuscate your in-app billing code.

Cross-Cutting
There are functionalities and components that can be found across different
mobile application subsystems, such as security, error handling, logging, and other.

Development Options

When it comes to development effort, focus on these key considerations:

• Development speed
• Available programming expertise
• UX (responsiveness, performance)
• Data persistence (offline) & security
• Access to native device functionality
• Toolset and documentation
• Cross platform support
• Debugging and troubleshooting
• Timely access to OS innovations
• Deployment—distribution and maintenance
• Additional considerations—device fragmentation challenges,

monetization, market visibility, etc.

It’s important to remember that even though in theory the following frameworks
facilitate “build once and deploy on multiple devices,” in practice the apps require
tweaking for each platform. It is highly recommended to plan on 20-25% additional effort
on each platform once the base app is built. For big applications, it can take up to 40-50%.
Some device functions may already be supported by the cross-platform frameworks
so a careful analysis is needed to determine the additional effort required when
developing on multiple platforms. Most cross-platform frameworks let you build
plug-ins for device features not supported by the platform itself. However, plug-ins
should be developed for each platform, which adds to the overall effort.

case study Step-By-Step Guide to Developing Healthcare Mobile Solutions 4

UX Security Performance Battery Life Data Storage

Dealing with DataA uthenticationC oncurrency

Input validationScreen Size &

Orientation

Personalize

Social

Pop-ups

Navigation

Accessibility

Application
sandboxing

Cryptography

System & custom
permissions

Audit trail

Remote data
wipe out

Specialized
frameworks

UI layout perform
ance optimization

Monitor
battery level

Monitor
connectivity status

Local storage

External storage

Public cloud &
private backend

Preferences

Local database

Also, mind potential vendor lock-in. Cross-platform frameworks take time to support new
functionality that becomes available when a new OS version or device model is released.
Note—there is also no guarantee that it will be supported. In contrast, native apps can
leverage new capabilities immediately.

Patterns

The following mind map diagram shows some of the most important pattern categories
and the actual patterns for these categories.

Mobile Application Security

Security is a very important quality attribute of good, large scale, and mission critical
mobile software solutions. SoftServe strongly advises that security engineering best
practices be embedded within the implementation lifecycle.

According to the National Institute of Standards and Technology (NIST), embedding
security into an application produces 30 times the savings as opposed to trying
to bolt security on after the application is developed. Other experts put it at 100
times the savings. Insecure applications can lead to security breaches. The practice
 shows that up to 90% of vulnerabilities could be determined during code and design
review against the top 10 common vulnerabilities, therefore, SoftServe includes
regular security code review in the development process.

case study Step-By-Step Guide to Developing Healthcare Mobile Solutions 5

Planing Design Build Test Deploy

Security
Objectives

Security Design
Guidelines

Security Deploy-
ment Review

Threat Modelling

Security
Design Review

Deployment
Checklists

Security Testing

OWASP Top10

SANS/MITRE Top 25

Security
Code Review

OWASP Code
Review Guide

Security
Checklists

Static Code
Analyzers

Taking into consideration the possibility of future exposure for the designed solution
and growing user base, SoftServe recommends effective security engineering practices,
built in conformance with industry recognized and widely adopted Open Web Application
Security Project (OWASP) organization system wide and specific recommendations
from Microsoft for application security.

The following diagram depicts SoftServe’s security engineering practices throughout
ASDLC.

Incorporating security into Agile development, allows for the creation of applications
that are secure by design—not by chance or circumstance. The proposed solution
provides a range of benefits:

1. Effort benefit—the effort to fix the vulnerabilities in the early stage of the system
development lifecycle (SDLC) process is much less than the later stage of the process.
Once the code is complete and the flaw has not been identified, it is a very tedious
and time-consuming process to find problems once the application is ready to move
into production. In addition, last minute fixing may affect the entire functionality of
the program and hamper deadlines set for product release. Also, it may create other
security flaws, which is possible with a large and complex code.

2. Cost benefit—cost is directly proportional to effort required. Not only development
cost, but vulnerabilities identified in the production environment may involve more
costs. Again, it is well worth it as the costs associated with an attack can be much
steeper.

3. Compliance—some compliance makes it necessary to do a secure code review before
launching the product. Therefore, an organization following complete SDLC has a
better chance of being certified.

4. Reputation—secure code review removes most of the security flaws in the earlier phase
making it more secure than only black box assessments. Therefore, there is less chance
of the product being compromised, which means less chance of reputation damage.

case study Step-By-Step Guide to Developing Healthcare Mobile Solutions 6

Data Privacy and Regulatory Compliance

During architecture design and product implementation, it is vitally important to follow
HIPAA Technical Safeguards guidelines.

HIPAA Standards Sections Implementation
Access Control 164.312(a)(1) • Unique user identification—UI shall provide

authentication mechanism with user name
or e-mail and strong password (prohibits
registering with weak passwords, previous
passwords, and easy guess keywords).

• Role-based security—user access level
should be “minimum necessary” and based
on privileges set by account administrator:
view; view and modify; view, modify and
collaborate.

• User credential encryption—SSL 2048
should be used to protect transferring user
credentials over network. The software
shall not store user passwords, but only
hash codes protected with algorithms
approved by NIST (for example, SHA 256+).

• Remember me—to be turned off.

• Auto-logoff—although this implementation
is optional in HIPAA, most healthcare
solutions implement it.

• Emergency access procedure—depends
on business requirements, should be
considered during initial phase.

• Access for non-registered users—consider
masking patient code and limiting (again
“minimum necessary” rule) patient personal
information shared with such users.

case study Step-By-Step Guide to Developing Healthcare Mobile Solutions 7

HIPAA Standards Sections Implementation

Access Control 164.312(a)(1) • Patient data encryption—this
implementation is optional by HIPAA, but
the HITECH Act encourages encrypting
patient data. Otherwise, if data is stolen,
the new requirements specify that
organizations must contact every affected
client and report the breach to the
government. There are several approaches
to meet this—DB encryption, file-system
encryption, disk or tape encryption, and
patient de-identification. All PHI data stored
locally (local storage, cookies, and others)
has to be encrypted. Means allowing erase
data residing at the client side remotely
should be implemented whenever possible
(for cases of device loss and similar).

• Security testing—SQL injection and other
common attack types on data must be
prevented at development time. Web
application has to be protected from
cross-site request forgery (CSRF) attacks.
The applications need to go through
the security audits, vulnerability, and
penetration testing before production.

• Audit trail—the software shall be able
to track which person accessed which
record (down to the patient level) on what
date, and whether it was viewed, shared,
updated, or deleted. Audit logs must either
be free from PHI or be secured—encrypted
or stored well protected.

case study Step-By-Step Guide to Developing Healthcare Mobile Solutions 8

HIPAA Standards Sections Implementation

Audit Controls 164.312(b) • Versioning—modification changes on
patient unstructured data such as radiology
images, DNA sequence files, etc. should be
made on a new copy of the data, preserving
all previous data versions. The system shall
not delete PHI records physically from the
storage.

• Patient data retention—recommended
retention period of radiological records is
six years after the conclusion of treatment.

• The minimum retention period of
molecular pathology electronic reports,
worksheets, and images is 20 years.

Integrity 164.312(c)(1) • Data authentication—signature or check
sum can be used to make sure that data is
authentic. Some storage solutions already
implement check sum integrity check.

• Backups—the data storage solution must
sustain device failures and have the ability
to quickly detect and repair any lost
redundancy. This requirement is critical
for a data center or hosting provider.
OLTP storage also must provide failover
capabilities with backup plans. All backups
have to be stored in an encrypted state.

Person or Entity
Authentication

164.312(d) • Unique user identification—see Access
Control section.

• Authentication with third party
software—recommend use of x.509
certificates and tokens as secure
mechanisms to authenticate t
he connected party.

case study Step-By-Step Guide to Developing Healthcare Mobile Solutions 9

HIPAA Standards Sections Implementation

Transmission Security 164.312(e)(1) • Integrity Controls—usage of SSL/TLS
protocol over HTTP (i.e. HTTPS) or TCP will
ensure that data is not modified by “man in
the middle.”

• Encryption—all traffic to and from the
hosted software should be protected by
SSL 2048. Web Client must not pass any
PHI data in URL parameters when sending
request to the server.

UI Design

Product success is measured not only by how well the product functions are designed,
but also by how well the product serves the customers and the value they perceive
from their experience. A great user experience ensures a high-level of user satisfaction
and loyalty. With effective UI design, SoftServe can help businesses reduce development
time, training and support costs, while also increasing the ROI and customer retention rate.

ABOUT US
SoftServe is a digital authority that advises and provides at the
cutting-edge of technology. We reveal, transform, accelerate, and
optimize the way enterprises and software companies do business.
With expertise across healthcare, retail, media, financial services,
software, and more, we implement end-to-end solutions to deliver
the innovation, quality, and speed that our clients’ users expect.

SoftServe delivers open innovation—from generating compelling
new ideas, to developing and implementing transformational
products and services.

Our work and client experience are built on a foundation of
empathetic, human-focused design that ensures continuity from
concept to release.

We empower enterprises and software companies to (re)identify
differentiation, accelerate solution development, and vigorously
compete in today’s digital economy—No matter where you are in
your journey.

Visit our website, blog, Facebook, Twitter, and LinkedIn pages.

NORTH AMERICAN HQ

EUROPEAN HQ

Tel: +1 866 687 3588 (USA)
Tel: +1 647 948 7638 (Canada)

Tel: +44 (0) 800 302 943

https://www.softserveinc.com/en-us/
https://www.softserveinc.com/en-us/blog/
https://www.facebook.com/SoftServeCompany/
https://twitter.com/SoftServeInc
https://www.linkedin.com/company/softserve/

