
ROS
AUTOMATION
TESTING FOR
WHEELED AND
LEGGED MOBILE
ROBOTS

Lyubomyr Demkiv,
Yuriy Fedyuk, Taras Borovets

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 2

Building and testing applications for
robots has historically been a complicated
and time-consuming process. With AWS
RoboMaker’s cutting-edge automated
testing for virtual environments, integrating
new features to your robots and confirming
that they work is easier than ever.

Testing in robotics is as important
as in other software development
domains. The sooner you find an
issue, the easier it can be fixed. We
can divide software testing into two
types: manual and automated tests.

The Case for Robot
Software Automation
Testing

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 3

In manual robotics testing,
challenges include:

Automated testing in a simulated
virtual environment allows you to:

Test execution takes a lot of time Check robot behavior in a large
number of environments with different
scenarios, so one can find more
bugs compare to a manual test

Manual tests cannot be easily scaled
to different environments and
require expensive hardware Provide software developers with

more immediate feedback about
their applications and if they match
with correct robot behavior

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 4

There are multiple ways to classify
the automation tests. In general, the
tests can be split into two groups:

Automated tests may be split
into the following groups:

Functional tests. Refer to the ability
of the robot to accomplish the task
according to the business logic that has
been implemented in the solution

Smoke tests that cover the most
crucial robot functionality that can be
promptly tested to ensure the robot’s
stable behavior during further tests

Non-functional tests. Validate the robot’s
resource consumption, data storage,
data streaming capabilities, and other

Integration tests that validate the
functionality of the solution when
all distributed robot components
are executed together

Regression tests that ensure the robot’s
both functional and non-functional
characteristics are not negatively
affected by the most recent changes

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 5

Automated tests may be split
into the following groups:

Security tests aim to reveal the
vulnerability of the software during robot
operations under various conditions

The test phases are generally
split into three stages:

1. Unit tests when each individual
component is tested

2. Hardware integration tests

3. Business logic conformity tests

Using automated tests in simulated virtual
environments allows you to decrease
development and maintenance costs as
well as save costs during hardware tests.

Benefits of AWS RoboMaker

With multiple ways of orchestrating
automated tests, o but AWS RoboMaker
is one of the most convenient for
implementation. It is a fully managed
simulation service for running robot
applications in a simulated virtual
environment. You can seamlessly integrate
your robot automation tests with AWS
CodePipeline (or to other AWS services)
and run them during the CI/CD process.

Performance tests are usually
devoted to non-functional robot
performance ensuring stable, and
responsive behavior of the robot

Acceptance tests are final tests of
robot’s functional behavior prior
to final approval and release

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 6

AWS RoboMaker supports large-scale
and parallel simulations, so you can
easily run a wide variety of simulations
and receive results much faster than
using own hardware for that.

And with its pay-as-you-go pricing model,
you only pay for resources used, without
the need to think about hardware and
how to scale it. AWS RoboMaker provides
all the resources needed for a single
simulation or for dozens of simulations
in the same way, using a single API call.

Depending on your robot type, it could
require a unique set of tests. For example,
tests for drones are not as efficient when
applied to ground mobile platforms,
and vice versa. Best practice is to divide
all tests into several parts. with each
part responsible for testing specific
robot components such as its planner,
localization, and others. Let’s take a
closer look at each one of these tests.

Types of Tests

SLIPPAGE AND MOTOR

SATURATION TESTS

PLANNING

TESTS

BEHAVIOR

TESTS

LOCALIZATION

TESTS

Such tests are conducted
to check the work of motor
drivers and algorithms.
These tests could check
if the robot does not
move without commands
or whether the robot's
movements are precise
enough.

With planning tests, we
can check the work of the
robot navigation planner
and easily fix a bug when
the planner creates a new
route when we ask it to go
to a certain point where
we are located.

With behavior tests,
we check the robot’s
behavior under different
circumstances. Such tests
include, but not limited
to, obstacle avoidance
testing, coverage testing,
and moving from point A
to point B.

Localization tests help us
check whether the robot
can successfully localize
itself on a known map,
allowing us to control the
robot localization stack.

We will show what tests
are useful for ground
mobile robots. In our
examples we use scenario-
based testing, as it allows
us to easily parametrize
each test and integrate
robot simulation tests into
CI/CD process.

https://aws.amazon.com/blogs/robotics/building-a-ros-application-ci-pipeline-with-aws-robomaker/
https://aws.amazon.com/blogs/robotics/building-a-ros-application-ci-pipeline-with-aws-robomaker/

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 7

SoftServe’s robotics group developed a
list of ROS1 tests suitable for any mobile
robot running in 2D. Here’s how to run the
tests for the quadruped robot Spot from
Boston Dynamics. The control of multi-
legged robots is significantly different from
the control of robots with wheels or other
types of locomotion. However, the above-
mentioned types of tests are quite generic
and relate to high-level control testing or
robot-environment testing. Therefore, the

tests can be easily adapted to the robot
regardless of the type of its locomotion.

Boston Dynamics’ Spot is one of the
most advanced legged robots available
on the market. It can perform navigation
missions, move on difficult terrains,
climb stairs, carry payloads, and other.
You can find out more about the full
functionality of Boston Dynamics’ Spot on
their official website or read our blog.

How to Run the Tests
for Boston Dynamics’
Spot

https://github.com/SoftServeSAG/aws_ros_tests
https://github.com/SoftServeSAG/aws_ros_tests
https://github.com/SoftServeSAG/aws_ros_spot_test
https://github.com/SoftServeSAG/aws_ros_spot_test
https://www.bostondynamics.com/spot
https://www.bostondynamics.com/spot
https://www.softserveinc.com/en-us/blog/spot-simulation-tools

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 8

Today, the robot is used in such areas
as pipeline inspection, construction
inspection, healthcare, and others. To
ensure Spot’s reliability for your specific
mission, it must be tested beforehand.
For that, AWS RoboMaker can be used.

Parts of the Code

To test the robot on the AWS
RoboMaker, you need to have:

• Robot simulation package with a
control system and navigation stack.

• Test package

• A package that contains scripts
that create the cloud formation

• Test launcher that runs test scripts
with the required launch files

SoftServe’s robotics group repository
Scenario-based Tests with AWS RoboMaker
for Boston Dynamics' Spot allows you
to run tests with just one click. The
repository consists of the simulation
tool, package with tests, cloud formation
setup scripts, and test launch scripts.
Based on this example, you can easily
adopt scripts for your application because
of the repo’s modular structure.

The simulation for Spot is implemented
on the basis of the open-source package
champ, which is designed to develop
the control of the legged robots and
contains a preconfigured package for
the Spot simulation. The repository
includes navigation and localization
stacks, allows you to control the walk of
the robot and the positioning of its body
relative to the limbs. We have made the
necessary improvements to be able to
run the champ on AWS RoboMaker.

The cloud formation scripts set up
all the AWS resources needed for
automated testing on your behalf.

https://github.com/SoftServeSAG/aws_ros_spot_test
https://github.com/SoftServeSAG/aws_ros_spot_test
https://github.com/chvmp/champ

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 9

The test launcher aims to launch all needed
nodes for test running and launching
the test as well. The simulation tool is
split into the simulation environment
simulation_ws and robot environment
robot_ws. In order to launch a test, you
should launch the required package
for testing from both environments.
As such, we created directories which
include launch files to do that. For
example, in order to run an obstacle
avoidance test, you need to run Gazebo
with a robot model and test script in a
simulation environment, while in a robot
environment, you should run navigation
and localization stacks. Examples of
such launch files are given below.

 <arg name="mode" default="dynamic"/>

 <node pkg="softserve_simulation_
common" type="move_base_route_
manager.py" name="move_base_
route_manager" output="screen">

 </node>

 <include file="$(find mp_
behaviour_tests)/launch/obstacle_
avoidance_test.launch" >

 <arg name="path_topic"
value="$(arg path_topic)"/>

 </include>

</launch> <launch>

 <arg name="gui" default="false"/>

 <arg name="path_topic" default="/
move_base/GlobalPlanner/plan"/>

 <param name="use_sim_
time" value="true" />

 <include file="$(find rs_config)/
launch/gazebo.launch" >

 <arg name="gui" default="$(arg gui)" />

 </include>

Launch File in the Simulation Environment

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 10

When the launch files are ready,
you can run your test on the AWS
RoboMaker platform. How can you
run many different tests in different
environment conditions at scale? For
that, you should write test scenarios.

Test Scenarios

The scenario consists of a set of parameters
that define environment conditions, robot
behaviors, and expected outcomes. AWS
RoboMaker allows you to run hundreds of
simulation tests with different scenarios
at scale. Take a look at the JSON file to
configure the coverage test given below.

The coverage test shows the efficiency
of the robot's ability to cover the floor of
the environment. Here, the test-related
parameter is ROBOT_COVERAGE_TEST_
COVERAGE_GOAL which determines
the coverage goal. You can set different
goal values for different scenarios.

<launch>

 <arg name="gui" default="false"/>

 <param name="use_sim_
time" value="true" />

 <include file="$(find rs_navigation)/
launch/navigate.launch" >

 <arg name="map_file" value="$(find
aws_robomaker_small_house_world)/
maps/turtlebot3_waffle_pi/map.yaml"/>

 <arg name="rviz" value="$(arg gui)" />

 </include>

</launch>

Launch File in the Robot Environment

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 11

{
 "scenarios":{
 "Scenario1":{
 "simEnvironmentVariables":{
 "MODEL_NAME":"/",
 "START_X":"0",
 "START_Y":"0",
 "START_Z":"0.0",
 "START_YAW":"0",
 "ROBOT_COVERAGE_TEST_
COVERAGE_GOAL":"80"
 },
 "robotEnvironmentVariables":{
 "MODEL_NAME":"/",
 "START_X":"0",
 "START_Y":"0",
 "START_Z":"0.0",
 "START_YAW":"0"
 }
 },
 "Scenario2":{
 "simEnvironmentVariables":{
 "MODEL_NAME":"/",
 "START_X":"0",
 "START_Y":"0",
 "START_Z":"0.0",
 "START_YAW":"0",
 "ROBOT_COVERAGE_TEST_
COVERAGE_GOAL":"10"
 },
 "robotEnvironmentVariables":{
 "MODEL_NAME":"/",
 "START_X":"0",
 "START_Y":"0",
 "START_Z":"0.0",
 "START_YAW":"0"
 }
 }

 },
 "simulations":[
 {
 "scenarios":[
 "Scenario1",
 "Scenario2"
],
 "params":{
 "failureBehavior": "Fail",
 "maxJobDurationInSeconds": 600,
 "simulationApplications":[
 {
 "applicationVersion": "$LATEST",
 "launchConfig":{
 "launchFile":"coverage_
test.launch",
 "packageName":"rs_tests"
 }
 }
],
 "robotApplications":[
 {
 "applicationVersion": "$LATEST",
 "launchConfig":{
 "launchFile":"coverage_
test.launch",
 "packageName":"rs_robot_tests"
 }
 }
],
 "vpcConfig": {
 "assignPublicIp": true
 }
 }
 }
]
}

JSON file to configure the coverage test

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 12

Run Test

In order to run a test, you should execute
the following command in an IDE terminal:

cd ~/environment/aws _ ros _
tests./run.sh test _ launch _
json/<json _ file _ name>.json

For example, run the coverage test:

cd ~/environment/aws _ ros _
tests./run.sh test _ launch _
json/coverage _ test.json

This command launches two Simulation
Jobs picking parameters determined in
coverage_test.json file for two scenarios.
When the jobs are complete, you will see
the test results tagged to the simulation
jobs. For example, the coverage test is
tagged with the reasons for the end of
the test, test results, current coverage
value, start and end simulation time and
to which test scenario it corresponds.

Tags can carry additional information,
which will allow you to quickly find the
cause of bugs. Tag assignments are
performed by a simple command:

self.utils.set_tag(name=self.test_
name + "_Status", value="Failed")

Examples of Other Automation
Tests’ Execution

Let us consider several tests from the
available list in our test repository.

https://github.com/SoftServeSAG/aws_ros_tests

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 13

Slippage and Motor Saturation
Tests: Standstill Test

Video 1 depicts the execution of a standstill
test that has to detect whether the slippage
is set to a realistic value. When standing on
the flat surface, the robot's 6DOF position
should not change as time passes by.

The test is marked as Failed, if a
robot's 6DOF position changes during
a predefined period of time. The test

is marked as Passed, if a robot's 6DOF
position is unchanged within time, less
than the predefined period of time.

Video 1 also demonstrates that when
the robot’s position was changed, the
test was tagged as failed. You can run
different scenarios in which the robot
is spawned on different floor materials
(wood, betony etc.), and also redefine
its position and orientation tolerance.

Video 1. Slippage and motor saturation tests: Standstill test.

https://www.youtube.com/watch?v=Nks5xbCE-Dk&list=PL0jiIBuf0E6tz0Uf1IH3dGREkLgPvnawO&index=1

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 14

Planning Test: Navigation from Point
A to B with Predefined Position
and Orientation Tolerances

When you have tested how the
robot interacts with different
environments, you next need to test
a planning algorithm. In video 2, you
can see how the robot navigates in
an apartment to a random goal.

The test verifies whether the robot
navigates from point A to point B with

predefined accuracy while considering
a goal yaw orientation. The test is
marked as Failed, if a timeout occurred
and the robot did not reach the goal
within the predefined tolerance.

The test is marked as Passed, if the robot
navigated to point B with predefined
accuracy within time (less than the
timeout). You can run many tests at scale to
test how the robot navigates to a random
point or set predefined points on the map.

Video 2. Planning test: Navigation from point A to B with
predefined position and orientation tolerances.

https://www.youtube.com/watch?v=NqC290PbFbE&list=PL0jiIBuf0E6tz0Uf1IH3dGREkLgPvnawO&index=4

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 15

Behavior Tests: Coverage Test

The next type of testing is robot behavior
tests. The most often required for
mobile robots is the coverage test (see
Video 3) that shows the efficiency of the
robot's ability to cover the floor of the
environment. The test monitors the robot’s
movement and creates a coverage grid
with places where the robot already was.

Based on this map and parameters, like
robot tool radius and coverage area offset,
we can calculate coverage progress and
compare it with the coverage goal. The test
is marked as Failed, if a timeout occurred
and the coverage progress is less than
the coverage goal. The test is marked as
Passed, if the coverage goal is reached
within time, less than the timeout.

Video 3. Behavior tests: Coverage test.

https://www.youtube.com/watch?v=uAb5zJhtC6w&list=PL0jiIBuf0E6tz0Uf1IH3dGREkLgPvnawO&index=2

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 16

Localization Test

To satisfy the reliability of autonomous
missions, the localization algorithm
should work with the desired accuracy
under different world disturbances.
Thus, the developer should test the
localization stack in a changeable
world. For example, in video 4, you
can see how the robot navigates
and localizes itself when the objects
disappeared from their initial position.

The test verifies whether a localization tool
locates the robot pose correctly when the
predefined amount of the world's objects
is deleted or moved to predefined poses.

You can specify which object should be
moved/deleted and their final destination
when the Move option is activated.

During the test, the robot navigates
through the predefined or random
points on the map until the robot has
reached all points or timeout occurred.
The test is marked as Failed, if a timeout
has occurred or predefined points were
reached, and the robot did not localize
itself with desired tolerance. The test is
marked as Passed, if a robot localizes
itself with predefined accuracy before
timeout or all points were reached, and
the robot localizes itself correctly.

Video 4. Localization test.

https://www.youtube.com/watch?v=0wE_fBmimpU&list=PL0jiIBuf0E6tz0Uf1IH3dGREkLgPvnawO&index=3

Solution Brief ROS Automation Testing for Wheeled and Legged Mobile Robots 17

More tests are available in the ROS1
tests for AWS RoboMaker repository.
They cover some basic scenarios and
thus can decrease the time-to-market
for robotics projects. We are working on
adapting these tests for other types of
robots: drones, robotic arms, and other.

LET’S TALK about your robotic software
testing and how SoftServe’s global team
of experts may help you on your journey.

https://github.com/SoftServeSAG/aws_ros_spot_test
https://github.com/SoftServeSAG/aws_ros_spot_test
https://www.softserveinc.com/en-us/contact

ABOUT US
SoftServe is a digital authority that advises and provides at the
cutting-edge of technology. We reveal, transform, accelerate, and
optimize the way enterprises and software companies do business.
With expertise across healthcare, retail, energy, financial services,
and more, we implement end-to-end solutions to deliver the
innovation, quality, and speed that our clients’ users expect.

SoftServe delivers open innovation, from generating compelling new ideas,
to developing and implementing transformational products and services.

Our work and client experience is built on a foundation
of empathetic, human-focused experience design that
ensures continuity from concept to release.

We empower enterprises and software companies to (re)identify
differentiation, accelerate solution development, and vigorously compete
in today’s digital economy-no matter where you are in your journey.

Visit our website, blog, LinkedIn, Facebook, and Twitter pages.

NORTH AMERICAN HQ

201 W 5th Street, Suite 1550
Austin, TX 78701 USA
+1 866 687 3588 (USA)
+1 647 948 7638 (Canada)

EUROPEAN HQ

30 Cannon Street
London EC4M 6XH
United Kingdom
+44 333 006 4341

APAC HQ

6 Raffles Quay
#14-07
Singapore 048580
+65 31 656 887

info@softserveinc.com
www.softserveinc.com

https://www.softserveinc.com/en-us
https://www.softserveinc.com/en-us/blog
https://www.linkedin.com/company/softserve/
https://www.facebook.com/SoftServeInc
https://twitter.com/SoftServeInc

