
CLOUD
SECURITY
AND THE
CONTAINERS
APPROACH

By Igor Beliaiev

As elusive as the cloud can be for most people, the concept of the containers approach can
be even more so. What is a container and where does it fit into cloud security?

“Containers” and “microservices” are an approach to developing applications for a cloud
environment. The word “container” most likely brings to mind a shipping container, or box.
As the word applies to the cloud, it’s not far off. A container is an easily moveable “box” of
services that supports the applications that run within it, while providing a connection to the
cloud host environment. Microservices are the applications that run inside the containers.

Why Containers?
The concept of containers is somewhat similar to the idea of a virtual machine itself. But
containers are much more lightweight than virtual machines; more flexible, scalable, and
easier to use. They can pack more applications into a given physical infrastructure than
virtual machines, and without relying on a guest operating system or replicate. Container
technologies can also be spun up instantly, and don’t virtualize entire servers, but rather the
applications themselves.

2whitepaper | Cloud Security and the Containers Approach

The Benefits of Using Containers
For many years, software developers were building full programs that were installed on a
computer and ran on a specific OS. But since all of the functions within the program weren’t
independent, a failure in any part of the program could crash the entire system. Booting up
a new virtual machine with the service could take a few minutes, or even a few hours, for
particularly large services.

Containers and microservices are an improvement on this old system, and provide a better
way of building software for cloud deployment. Containers “spin up” in less than a second, so
failure recovery is nearly instantaneous. Contrary to writing a giant, monolithic program of all
user functions, developers are building microservices that each perform a very specific task.
Making the functions fully independent from one another also allows the development team
to use the best programming language for each function, rather than choosing one language
for all functions.

Containers were conceived as the answer to a matrix of restriction
and incompatibilities.

By providing a common interface to migrate applications between environments, you don’t
need to rebuild the application to ensure compatibility in the new environment. Various
microservices come together to form a complete cloud-based service for the user.

3whitepaper | Cloud Security and the Containers Approach

Containers and Digital Transformation
Containers and microservices help the most innovative software companies to increase the
efficiency of their businesses, build more reliable software, improve a continuous delivery
process, and transform their application development processes and IT infrastructure.
As companies embrace new technologies like these, security must be more than an
afterthought. In the era of digital transformation, the focus needs to be shifted from securing
network perimeters to securing data spread across all systems, devices, and the cloud.

The world’s largest technology companies, including Microsoft and Google, are now
using cloud containers — and they’re increasing their presence in production environments
every day.

According to a Red Hat survey, 67 percent of organizations are planning to start using
containers in production environments over the next two years. According to another survey
by Cluster HQ, a container data management company, 73 percent of enterprises are
currently using containers for development and testing.

Containers vs VMs
One of the most common misconceptions about containers is that they act as light virtual
machines (VMs). Containers create an isolation boundary at the application level rather than
at the server level. This isolation means that if anything goes wrong in that single container
it only affects that individual container and not the whole VM or whole server. That leads
many people to think they are perfectly isolated — but they’re not. A malicious container
can influence the execution of other containers through the common kernel, by exploiting a
kernel vulnerability or leveraging the privileges of the compromised container.

4whitepaper | Cloud Security and the Containers Approach

Guest OS Guest OS Guest OS

Bins/Libs Bins/Libs Bins/Libs

App 1 App 2 App 3

Hypervisor

Host Operating System

Infrastructure

Virtual Machines

Bins/Libs Bins/Libs Bins/Libs

App 1 App 2 App 3

Docker Engine

Operating System

Containers

Infrastructure

http://Microsoft
http://Google
https://www.csoonline.com/article/2984543/vulnerabilities/as-containers-take-off-so-do-security-concerns.html
https://www.cio.com/article/2984545/data-center/as-containers-take-off-so-do-security-concerns.html#tk.rss_all

Because containers roll an application together — with its dependencies and interfaces
— into a single re-deployable unit, a container can be run on any host system with
the appropriate kernel components while shielding the application from behavioral
inconsistencies due to variances in software installed on the host. Multiple containers
can be run on a single host OS without the use of a hypervisor, while still being isolated
from neighboring containers. This layer of isolation introduces consistency, flexibility, and
portability that enables rapid software deployment and testing.

Recognizable Container Software
One of the best examples of recognizable container software is Docker. At its core, Docker
is an open-source project that uses several resource isolation features of the Linux kernel
to sandbox an application, its dependencies, and interfaces inside of an atomic unit. “Your
application is really more secure when it’s running inside a Docker container,” said Nathan
McCauley, director of security at Docker, which currently dominates the container market.

It does not require any configuration off the bat — just one simple command to install it
and you are in. But Docker is not a security tool meant to be used out of the box. Its default
configuration provides a lot of settings that allow it to become much more secure and
reliable. While it may not be for beginners, Docker is a great tool for developers.

Although containers aren’t as isolated from one another as virtual machines, they are more
secure than applications that run by themselves. And because containers are an easy way to
package and distribute applications, many are doing just that.

But not all containers software available on the web can be trusted, and not all libraries and
components included in those containers are secure, patched, and up-to-date.

5whitepaper | Cloud Security and the Containers Approach

App 1 App 2 App 3

Guest OS Guest OS Guest OS

Hypervisor

Infrastructure

Virtualization Approach

App 1 App 2 App 3

Docker Engine

Operating System

Docker Container Approach

Infrastructure

Container Security
Since cloud containers became popular, one of the biggest concerns has become how to
keep them secure. The best practices for securing container environments are not only
about hardening containers or the servers they run on after security has been breached —
they focus on securing the entire environment right off the bat. Security must be considered
from the moment container images are pulled from a registry up until the containers are
spun down from a runtime or production environment.

SecDevOps: Starting Security at the Beginning
The best way to make your cloud containers secure is to keep security in mind from
step one.

At SoftServe, we use a specific security lifecycle:
Security + DevOps = SecDevOps. In other words, DevOps moves security closer to the
beginning of the software lifecycle, making it an integral part of the secure development
lifecycle (SDLC).

More and more businesses realize that initiating security at QA time, or as a reaction to a
security threat, is too late. Putting security earlier in the development lifecycle process causes
a much higher rate of success and much higher throughput.

SecDevOps seeks to embed security inside the development process as deeply as DevOps
has done with operations. Classic DevOps is designed to automate software development,
accelerating the process to satisfy the needs of operations to acquire code that immediately
works in production. SecDevOps, in contrast, automates the secure coding component of
development to satisfy the needs of the security team, establishing and maintaining software
that is immediately secure in production.

6whitepaper | Cloud Security and the Containers Approach

Security in the SDLC

Secure
Requirements

Review

Secure
Design
Review

Secure
Code

Review

Penetration
Testing

Requirements
Definition Design Develop Test Deploy/

Implement

Maintain

In most cases, the correct model for container security is a collaborative one with well-
defined responsibilities that SecDevOps experts provide. Keep in mind, however: DevOps
teams are not security experts and security teams are not usually as well-versed in DevOps.
Security teams want to ensure that software is delivered without vulnerabilities, no matter
how long it takes, and DevOps aims to deliver the best quality software as fast as possible.
That being said, the future of this collaboration lies in the ability of security and development
teams to communicate with empathy.

Putting security in the process from the beginning provides the opportunity to secure
architecture, infrastructure, environment, and application from scratch, instead of looking at
the entire application and trying to understand its potential risks. This approach allows for
the discovery and correction of issues before going into production, and provides the ability
to automate security processes into the development cycle that reduce human mistakes and
improve risk management.

With large and complex applications, it’s necessary to ensure the security of the whole entity,
rather than its bits and pieces. With the challenge of securing microservices, it’s necessary
to protect a large number of services and their implementations one by one. They interact
with each other through various APIs and data flows. More services means more elements
exposed to cyber-attacks or leakage, so a larger span of security means better protection to
cover all of them, rather than each at a time.

Best Practices for Secure Containers
Reducing the attack surface is a basic goal of security. Containerization has specific structural
and operational elements that require scrutiny. Specifically, the underlying shared kernel
architecture of containers requires special attention beyond securing the host; it requires
maintaining standard configurations and container profiles. Here are some best practices for
keeping your containers secure.

7whitepaper | Cloud Security and the Containers Approach

Keep It Simple
The first step is pretty straightforward: Keep it simple. Try to keep your container ecosystem
as simple as possible. You should run processes in separate containers, even if these are
services that depend on one another. You should also use the container-linking feature
to connect two containers rather than combining them in the same one. You should also
focus on keeping the footprint of containers small — don’t load unnecessary packages or
services that just waste resources — and make sure that your containers are designed to
be easily replaceable.

Comprehensive Vulnerability Management
Going back to major areas for reviewing container security risks, we need to mention the
importance of having a comprehensive vulnerability management program. Vulnerability
management goes far beyond scanning images when they are first downloaded from a
registry. Containers can easily pass through the development cycle with access controls or
other policies that are too loose, resulting in corruption that causes the application to break
down or a compromised runtime.

Proactive Checks
Implementing proactive checks throughout the lifecycle is another measure that ensures
secure containers. Part of managing security through the container lifecycle helps to ensure
the integrity of the container images in the registry and to enforce controls as they have
been deployed into production. Image signing or fingerprinting could also be used, allowing
you to verify the integrity of the containers. Ensure that only approved images are running in
your environment.

Least Privileges in Runtime
Try to have the least privileges in runtime. This is a basic security best practice that applies
equally in the world of containers. When a vulnerability is exploited, it generally provides the
attacker with access and privileges that are equal to those of the application or process that
has been compromised. Ensuring that containers operate with the least privileges and access
required to get the job done reduces your exposure to risk.

Enforce Network Segmentation
On running containers, make sure to enforce network segmentation or micro-segmentation
to segregate clusters or zones of containers by application or workload. In addition to being
a highly effective best practice, network segmentation is a must-have for container-based
applications that are subject to PCI DSS.

Monitor, Monitor, Monitor
And as we already know, monitoring is a key. Do an active monitor of container activity and
user access as is it realized in any typical IT environment to quickly identify any suspicious or
malicious activity. Log all administrative user access to containers for auditing.

8whitepaper | Cloud Security and the Containers Approach

Things to Watch Out For
Proactive security is preferable to reactive security in any situation, but sometimes it pays to
keep an eye on particular problem areas.

Here are few major areas to consider when reviewing container security:

Kernel-Level Threats
In containers, the kernel is shared among all containers and the host, making the kernel
more vulnerable. Kernel exploits range from privilege escalation, to arbitrary code execution,
and even Denial of Service. Ensure the host operating system is hardened, up-to-date, and
that it leverages kernel security patching features.

Bypassing Isolation
Attackers who gain access to one container can gain access to other containers or even
to the host itself. If the hacker can get root privileges inside a containerized app, he can
potentially gain root access to the host. This can impact potential privilege escalation attacks
where the user gains higher privileges, such as those for the root user, and can be done
through a bug in application code. This is the primary concern surrounding containers and
but can be avoided by employing a comprehensive approach based on system hardening,
strengthening default configurations, and patching.

Insecure Images
If container images aren’t downloaded from trusted sources, there is a high risk of
downloading malicious images into your environment. Those images could contain
malware and backdoors, or even outdated software with known vulnerabilities. If an
attacker can trick and convince you to run his image, both the host and your data are
in danger. In an open-source environment, images created by any organization’s

9whitepaper | Cloud Security and the Containers Approach

developers are often updated and accessible. This can create an endless stream of
uncontrolled code that may harbor vulnerabilities or unexpected behaviors. To prevent
this, always download images from trusted sources and ensure that images do not
contain any software with known vulnerabilities.

Compromising Secrets
When a container accesses any service, it will likely require a secret, like an API key or
username and password. An attacker who can get access to this secret will also have access
to the service. This problem becomes more acute in a microservice architecture in which
containers are constantly stopping and starting. The best practices to keep your secrets safe
include: encrypting secrets while in transit; encrypting secrets at rest; preventing secrets
from unintentionally leaking when consumed by the final application; and strictly adhere
to the principle of least-privilege, where an application only has access to the secrets that it
needs — no more, no less.

Denial-of-Service (DoS) Attacks
A container could behave in a way that effectively creates a DoS attack on other containers.
For example, opening sockets repeatedly will quickly bring the entire host machine to a crawl
and eventually cause it to freeze up. DoS attacks may include scenarios where one container
seizes control of all available system resources to stop other containers from operating
properly. If a single container can monopolize access to certain resources – including
memory and more secret resources such as user IDs – it can starve out other containers on
the host, resulting in a denial of service, whereby legitimate users are unable to access part
or all of the system. To avoid this issue in most cases, try limiting the amount of resources,
CPU, and memory allocated to the container. The implementation of monitoring tools can
also help to track and deal with DoS attacks.

Cross-Container Threats
Cross-container threats usually arise due to weak network defaults such as a bridge
configuration. An application on one container may be able to compromise another
container on the same host or on the same local network (for example gaining unauthorized
access to the database container on the same host). To prevent cross-container threats, use
proper networking management with custom configuration and user-defined networks.

Default Configurations
Systems that use default configurations have a high potential for information security
breaches, because cyber-criminals tend to look for common standard configuration. Make
sure to customize your containers, not only to better suit your own needs but also to
decrease the likelihood of compromised security. Do the additional work to harden your
container-based environment and make it more secure and robust.

10whitepaper | Cloud Security and the Containers Approach

Conclusion
Containerized applications can be inherently more secure than their predecessors with the
right attention to security. Microservices provide a high level of risk mitigation due to the fact
that they are container-based, feature the ability to easily rollback if needed, and provide
greater system resilience.

Organizations can improve their security with the use of containers, without adding
incremental overhead to their application infrastructure. Containers provide isolation for
applications from their host and from each other. They minimize the use of resources from
the underlying infrastructure, and reduce the surface area of the host itself when configured
properly. While applications secured in containers are already more secure, there are
endless ways to make your containers even safer.

Additional Resources
Docker Secure Deployment Guidelines
AWS: Docker on AWS
Docker Docs: Docker Security
Redhat: Container Security Guide

11whitepaper | Cloud Security and the Containers Approach

https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines
https://d0.awsstatic.com/whitepapers/docker-on-aws.pdf
https://docs.docker.com/engine/security/security/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/overview

ABOUT US
SoftServe is a global digital authority and consulting company, operating
at the cutting edge of technology. We reveal, transform, accelerate, and
optimise the way large enterprises and software companies do business.
With expertise across healthcare, retail, media, financial services, software,
and more, we implement end-to-end solutions to deliver the innovation,
quality, and speed that our clients’ users expect.

SoftServe delivers open innovation – from generating compelling new
ideas, to developing and implementing transformational products and
services. Our work and client experience is built on a foundation of
empathetic, human-focused experience design that ensures continuity
from concept to release.

Ultimately, we empower businesses to re-identify their differentiation,
accelerate market position, and vigorously compete in today’s digital,
global economy.

Visit our website, blog, Facebook, Twitter, and LinkedIn pages.

USA HQ

201 W 5TH STREET, SUITE 1550
AUSTIN, TX 75703
+1 866 687 3588

EUROPEAN HQ

One Canada Square
Canary Wharf
London E14 5AB
+44 (0)800 302 9436

info@softserveinc.com
www.softserveinc.com

https://www.softserveinc.com/en-us
https://www.softserveinc.com/en-us/blog
https://www.facebook.com/softservecompany
https://www.twitter.com/softserveinc
https://www.linkedin.com/company/softserve

